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Abstract. Förster energy transfer from an excited semiconductor quantum dot to the surrounding organic
material is considered. While earlier only the calculations for the lowest excited state of the dot were
performed and only the limiting cases of strong and weak confinement were analyzed, in this work we
present the results for the crossover region, obtained from the variational calculation. We also consider
the transfer from the higher excited states, which may be relevant if the carrier relaxation in the dot is
inhibited due to the discreteness of the states. We employ a microscopic quantum mechanical description
of the Wannier-Mott exciton in the quantum dot and a macroscopic description of the organic medium.
According to our calculations, for II-VI type semiconductors (like CdSe) and strongly absorbing organics
(like PTCDA) the energy transfer may occur on time scales of several tens of picoseconds, which is sig-
nificantly less than the quantum dot excitation lifetime in the absence of such transfer. Thus, as in the
case of quantum wells, the Förster mechanism may be an efficient tool for pumping organic light-emitting
substances. In this paper we also consider how the carrier intraband relaxation time in the dot may be
affected by the Förster energy transfer.

PACS. 78.66.-w Optical properties of specific thin films, surfaces, and low-dimensional structures –
78.20.Bh Theory, models, and numerical simulation – 78.66.Qn Polymers; organic compounds

1 Introduction

Hybrid nanostructures based on semiconductor and or-
ganic materials with close exciton energies [1] were con-
sidered theoretically in different configurations and were
shown to have certain advantages in comparison to tra-
ditional nanostructures, purely organic or purely inor-
ganic [1–6]. These configurations can be divided into
two groups. In the first case (strong coupling regime)
the characteristic energy of the dipole-dipole interaction
of Wannier-Mott excitons (in the semiconductor) and
Frenkel excitons (in the organics) is larger than their level
widths. As a result, new elementary excitations appear,
being the coherent superposition of the two types of exci-
tons [1–3,6]. Such systems were shown to have enhanced
optical nonlinearities.

In the second case (weak coupling regime) the level
width is larger than the resonant interaction energy. In
such situation, which is common for many organic sub-
stances, dephasing processes destroy the coherent super-
position of excitonic states. Instead, incoherent energy
transfer from the subsystem with the weaker dissipation
(donor) to the subsystem where dissipative processes are
stronger (acceptor), takes place. This corresponds to the
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Förster picture of energy transfer [7]. The most relevant
case is when the semiconductor part of the structure plays
the role of the donor, and the organic part – of the ac-
ceptor. If the characteristic transfer time is less than or
comparable to the Wannier-Mott exciton lifetime, then a
significant fraction of the excitation energy can be trans-
ferred from the semiconductor to the organics. This gives
the possibility to combine comparatively good transport
properties of semiconductors (e.g., pumped electrically
[8,9]) and good light-emitting properties of organic sub-
stances. Calculations performed for the planar geometry
(semiconductor quantum well, covered by an organic over-
layer) [4,5], have shown that such transfer indeed may be
quite efficient.

One family of semiconductor nanostructures, widely
studied in recent years, is that of quantum dots (see [10]
and references therein). Förster energy transfer from a
semiconductor quantum dot to the surrounding organic
medium has also been predicted [11]. In reference [11]
only the transfer rate from the lowest excited state of the
dot was calculated and only the limiting cases of strong
and weak confinement (in other words, the dot size much
smaller or much larger than the exciton Bohr radius) were
considered. However (see Ref. [12] and references therein),
due to the discreteness of states, carrier relaxation in



654 The European Physical Journal B

quantum dots happens in a way qualitatively different
from that in higher-dimensionality nanostructures. The
role and efficiency of different relaxation mechanisms is
not yet clear [10,12], so we consider the problem of the
energy transfer from higher levels of the dot to be rele-
vant. We also show that the carrier relaxation itself may
be affected by Förster transfer.

In the present paper we (i) look at the transfer rate
from the higher excited states, and (ii) present the results
for intermediate dot sizes obtained from a variational cal-
culation. For simplicity we consider a spherical quantum
dot and describe the Wannier-Mott exciton in the effective
mass approximation. Such description (as well as the use
of the semiconductor background dielectric constant to de-
scribe the screening) implies that the size of the dot should
be significantly larger than the lattice constant. For the
organic subsystem the macroscopic description employing
the complex dielectric function is satisfactory [5], since
the length scale of field variation in the organics is much
larger than the molecular length scale. In Section 2 we
describe the general scheme of the Förster energy transfer
rate calculation for a hybrid nanostructure, in Section 3
we derive general relations for the spherical geometry, Sec-
tion 4 describes the results for different excited states in
the limiting cases of strong and weak confinement, in Sec-
tion 5 we compare these results with those obtained from
simple variational calculation for the lowest excited state.

As for the possible experimental configurations where
the predicted effects could be observed, the continuous
technological progress in the growth and characterization
of quantum dots such as overgrown self-organized dots or
stabilized nanocrystal colloids is very promising; however,
a detailed analysis of specific material systems is beyond
the scope of the present paper.

2 The transfer rate

We consider a nanostructure consisting of a spherical
quantum dot of radius R with dielectric constant ε, sur-
rounded by a concentric semiconductor barrier with thick-
ness Lb and the same dielectric constant. The barrier is
assumed to be infinitely high, thus carriers cannot pene-
trate it. The space outside the barrier is filled with the or-
ganic substance with dielectric constant ε̃. The quantity ε
includes only the contribution of higher resonances (with
respect to the exciton resonance under consideration) and
we consider it to be real. The quantity ε̃ is the total di-
electric constant of the organic material and is complex
in the frequency range of interest, which corresponds to
absorption.

Here we use the same scheme of the Förster energy
transfer rate calculation for a hybrid nanostructure, as
employed in references [4,5,11], and discussed in detail
in reference [5]. This approach [13] is equivalent to the
usual Förster theory within the appropriate conditions for
its applicability (in particular, the energy back transfer
should be negligible) as discussed in reference [7]. In the
case considered here the transfer rate may be found from

the calculation of the Joule losses of the electric field pro-
duced in the organic medium by the exciton polarization
of the quantum dot.

Let the electron-hole pair in the dot be described by
the envelope wave function ψ(re, rh) with the correspond-
ing energy ~ω (re, rh being the electron and hole coordi-
nates). Let also dvc be the matrix element of the electric
dipole moment between the Bloch functions of the conduc-
tion and valence band extrema. Following the approach of
reference [5], the exciton polarization in the quantum dot
is written as

P(r) = dvc ψ(r, r) . (1)

The electric field E(r) corresponding to this polarization
may be found from the Poisson equation for the potential
φ(r):

ε(r)∇2φ(r) = 4π div P(r) , (2)

where ε(r) = ε at r < R + Lb and ε(r) = ε̃ at r >
R + Lb, with the corresponding boundary conditions at
r = R+Lb. Knowing the electric field, we can calculate the
power dissipated in the organic medium (Joule losses) [14]
(the application of this semiclassical approach to quantum
transitions was explained in detail in Ref. [5]):

W =
ω Im ε̃(ω)

2π

∫
r>R+Lb

|E(r)|2 d3r. (3)

From here we find that the transfer rate (inverse transfer
time) is given by

1
τ

=
W

~ω
=

Im ε̃(ω)
2π~

∫
r>R+Lb

|E(r)|2 d3r . (4)

3 The electric field in the organics

In the spherical geometry the states of the electron-hole
pair may be classified by the total angular momentum
quantum numbers l,m, which determines the angular de-
pendence of the electron-hole pair wave function

ψ(r, r) ∝ Ylm(θ, ϕ) , (5)

where Ylm(θ, ϕ) are the spherical harmonic functions. The
case of the lowest excited state, considered in reference [11]
corresponds to l = m = 0. Putting the z axis along the
vector dvc, for the polarization we may write

Pz(r) = P (r)(r)Ylm(θ, ϕ) , (6)

which corresponds to the charge density:

ρ(r) = − div P(r) = − ∂P

∂z

= ρ
(r)
l−1(r)Yl−1,m + ρ

(r)
l+1(r)Yl+1,m . (7)
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After some algebra the functions ρ(r)
l∓1(r) defined by the

preceding equation may be related to P (r)(r):

i ρ
(r)
l−1(r) =

√
l2 −m2

4l2 − 1

[
dP (r)

dr
+ (l + 1)

P (r)

r

]
, (8)

i ρ
(r)
l+1(r) =

√
(l + 1)2 −m2

4(l + 1)2 − 1

[
−dP (r)

dr
+ l

P (r)

r

]
. (9)

The electrostatic potential φ(r), satisfying the Poisson
equation (2), may be also decomposed analogously to the
equation (7). The terms with Yl−1,m and Yl+1,m separate
in the Poisson equation and we have two equations for the
radial parts of the potential φ(r)

λ (r) with λ = l − 1, l + 1:

1
r2

d
dr

(
r2 dφ(r)

λ

dr

)
− λ(λ + 1)

r2
φ

(r)
λ = −4π ρ(r)

λ (r) , (10)

where ρ(r)
λ (r) vanishes at r > R (as P (r) does). A general

solution in a region, free of charges, corresponds to the
2λ-pole potential [15]:

φ
(r)
λ (R < r < R+ Lb) =

√
4π

2λ+ 1

×
[
Qexc
λ

εrλ+1
+Qsurf

λ rλ
]
, (11)

φ
(r)
λ (r > R+ Lb) =

√
4π

2λ+ 1
Qeff
λ

rλ+1
(12)

with some constants Qλ. The coefficient Qexc
λ is just the

bare 2λ-pole moment of the exciton polarization:

Qexc
l+1 = −i

√
(l + 1)2 −m2

√
4π

2l+ 1

∫ R

0

rl P (r)(r) r2 dr ,

(13)

while the contribution of the moment λ = l− 1 turns out
to be identically zero when integrated over the dot volume,
due to the fact that P (r)(r) vanishes at r = R. The back-
ground dielectric screening by the polarization charges in-
side the dot leads to the correction Qexc

l+1 → Qexc
l+1/ε, taken

into account in the expression (11). The coefficient Qsurf
l+1

is determined by the surface polarization charges at the
interface r = R + Lb between the media with different
dielectric constants ε and ε̃. The coefficient Qeff

l+1 is the ef-
fective multipole, which determines the field outside the
dot. We may relate Qsurf

l+1 and Qeff
l+1 to Qexc

l+1 requiring the
continuity of φ(r)

l+1(r) and ε(r) dφ(r)
l+1(r)/dr at r = R+Lb,

analogously to the procedure of reference [7], which gives

Qeff
l+1 =

2l + 3
(l + 1)ε+ (l + 2)ε̃

Qexc
l+1 . (14)

Having calculated the potential, we find the decay rate

1
τ

=
Im ε̃

2π~

∫
|r|>R+Lb

(∇φ∗ · ∇φ) d3r

=
2l+ 4
2l+ 3

Im ε̃

~
|Qeff

l+1|2
(R+ Lb)2l+3

· (15)

One may want to average (15) over m, which makes
sense since the energy does not depend on the magnetic
quantum number m. This is certainly relevant for the case
when the dot is pumped electrically, while for the case of
excitation by polarized light one should choose the state,
corresponding to the given polarization. Such averaging
corresponds just to the substitution in (13):√

(l + 1)2 −m2 →
√

(l + 1)(2l/3 + 1) , (16)

since the radial part of the polarization cannot depend on
the quantum number m.

4 The wave functions of the pair: limiting
cases

The exciton wave function ψ(re, rh) is determined by two
interactions: (i) the confinement potential, which we con-
sider to be infinite for r > R and zero at r < R, and (ii) the
Coulomb attraction of the electron and the hole. The char-
acteristic length scales corresponding to these interactions
are R – the quantum dot radius, and aB – the exciton bulk
Bohr radius. Solution of the Schrödinger equation for ar-
bitrary R and aB is quite a complicated problem (see,
e.g., [16,17]), but the situation becomes much simpler in
two limiting cases.

If R � aB (strong confinement), Coulomb interac-
tion may be completely neglected and the electron-hole
pair wave function will be simply the product of two
one-particle wave functions. Each one-particle state is
labeled by three quantum numbers: the orbital quan-
tum number l = 0, 1, ..., the magnetic quantum number
m = −l, ..., l, and the principal quantum number n =
1, 2, ... [18]. Denoting this set by a single symbol ν, we
may write

ψνe,νh(re, rh) = χνe(re)χνh(rh) , (17)

where the single-particle wave function is given by [18]

χnlm(r) ≡ χν(r) =

√
2
R3

jl(αlnr/R)
jl+1(αln)

Ylm(θ, ϕ) , (18)

where jl(x) is the l-th spherical Bessel function, αln is its
n-th zero (n = 1, 2, 3, ...).

However, to apply the results of the previous section,
we have to form the linear combinations corresponding to
states with definite total momentum. The new set of quan-
tum numbers is {le, ne, lh, nh, l,m} and the radial part of
the corresponding wave function is expressed in terms of
Wigner 3j-symbols as

ψ
(r)
lm (r) =

2 · (−1)(le+lh+l)/2

R3

×
(
le lh l
0 0 0

)√
(2le + 1)(2lh + 1)

4π

×jle(αlener/R)
jle+1(αlene)

jlh(αlhnhr/R)
jlh+1(αlhnh)

· (19)
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For le = lh = l = 0 this expression is reduced to that
obtained in reference [11] to give the dipole moment and
the transfer rate

Qeff
1 =

3ε̃dvc

ε+ 2ε̃
,

1
τ

=
12 Im ε̃

|ε+ 2ε̃|2
1
~
|dvc|2

(R+ Lb)3
· (20)

If R � aB (weak confinement), then the distance be-
tween the single-particle levels in the spherical potential
well (even for the lighter particle) is much less than the
bulk exciton binding energy. In this case the exciton may
be considered a rigid particle moving in a spherical well.
The relative motion of the electron and the hole and the
center-of-mass motion are effectively separated and the
wave function is factorized. E.g., for 1s-exciton state

ψν,1s(r, r) =
1√
πa3

B

χν(r) . (21)

For l = 0 we get the result of reference [11]:

Qeff
1 =

1
π

(
2R
aB

)3/2 3ε̃ dvc

ε+ 2ε̃
, (22)

1
τ

=
96 Im ε̃

π2|ε+ 2ε̃|2
1
~
|dvc|2
a3

B

(
R

R+ Lb

)3

. (23)

For the numerical estimations we use the parame-
ters, typical for II-VI semiconductors (e.g., CdSe) [19]:
aB ' 50 Å, dvc ' 12 D, ε ' 6. For the organic part
we need to know only the dielectric constant, we take it
to be ε̃ ' 4 + 3i. This value is not even the most op-
timistic one, e.g. for the PTCDA material, widely used
in experiments with organic nanostructures [20], one has√
ε̃ = n + iκ = 2.16 + i 1.04 [21], which gives even

larger Im ε̃. Having fixed Lb = 30 Å, in Figure 1 we plot
the transfer times for several strongly confined states, av-
eraged over the magnetic quantum number, as mentioned
in the end of Section 3, as a function of the dot radius R.
These states are {le = 0, ne = 1, lh = 0, nh = 1} (dipole
transition, solid line), {0, 1, 1, 1} (quadrupole transition,
long-dashed line), {0, 1, 2, 1} (octupole transition, short-
dashed line) – the lowest ones, and we take also the l = 0
component of {1, 1, 1, 1} (the seventh level), the next one
after the lowest state, possessing a nonzero dipole moment
(dash-dotted line). The upper limit of R is taken to be aB,
since for R > aB the strong-confinement approximation
definitely breaks down. The lower limit of R is different
for each state and is taken to be the radius, at which the
confinement energy of the state reaches 1 eV, since higher
confinement energies are not realistic. We see that for the
lowest state the transfer time is quite short – of the or-
der of 10 ps, as it was predicted in reference [11]. The
states with larger l have longer times, one may roughly
say that every unit of l “costs” about an order of mag-
nitude of τ . This fact, however, might even not spoil the
efficiency of the energy transfer since the carrier radiative
recombination time will also increase for higher multipole
transitions, provided that other relaxation channels are
quenched.

We have already mentioned in the Introduction (see
Ref. [12]) that the carrier relaxation in quantum dots may
be strongly inhibited due to the discreteness of states.
In this situation, any material, not necessarily an organic
one, with nonzero absorption at the frequency of an in-
traband transition may affect the intraband relaxation of
carriers. The estimation of the relaxation time due to the
Förster transfer may be performed along the same lines as
for the interband transition, starting from the point that
the matrix element of the charge density for the electron
(hole) transition from the state {l1,m1, n1} to {l2,m2, n2}
is given by

ρexc(r) = ∓e χ∗l2m2n2
(r)χl1m1n1(r) . (24)

This expression should be expanded into spherical har-
monics Ylm with l = |l1 − l2|, . . . , l1 + l2, m = m1 −m2.
The intraband transfer rate is given by the same formulas
(14, 15) with l+1 substituted by l (since there is no differ-
entiation ∂/∂z), but the bare exciton multipole moment,
corresponding to the transition rate, averaged overm1 and
summed over m2 (see the end of the previous section), is
given by

Q̄exc
l = 2eRl

√
2l2 + 1
2l + 1

(
l1 l2 l
0 0 0

)
×
∫ 1

0

dxxl+2 jl1(αl1n1x)
jl1+1(αl1n1)

jl2(αl2n2x)
jl2+1(αl2n2)

· (25)

The intraband transitions correspond to the infrared spec-
tral range, where the absorption is usually much weaker
than in the visible range. Hence, we set ε̃ = 4 + 0.3 i
and evaluate the intraband transition times for the tran-
sitions {l1 = 1, n1 = 1} → {l2 = 0, n2 = 1} (dipole
transition – 19 ps), {2, 1} → {1, 1} (dipole transition –
12 ps), {2, 1} → {0, 1} (quadrupole transition – 610 ps)
for R = 30 Å, Lb = 30 Å, shown by the vertical arrows in
Figure 1 (in our model the times are the same for electrons
and holes). As we see, dipole transitions are much more
intensive than higher multipole ones and the times may
be relatively short (a few tens of ps). Thus, if other re-
laxation processes are quenched, the Förster transfer may
play some role.

In this connection one may also consider a single-
carrier relaxation process, related both to the above con-
sidered Förster transfer and to the Auger relaxation, dealt
in reference [12]. If one considers an array of quantum
dots of characteristic size R, separated by distance r from
each other on the wetting layer of thickness Lw (no sur-
rounding organics is assumed), then the following process
may occur. Two carriers in the neighbouring dots interact
via Coulomb interaction (the first nonvanishing multipole
component is the dipole-dipole one), then as a result of
this interaction, one of the carrier relaxes to a lower state
in the dot, while the other is promoted to the wetting
layer continuum. This process is adequately described by
the Fermi Golden Rule and a simple estimate gives the
corresponding time of the order of

τ ' ~
3ε2

me4

r6

R5Lw
· (26)
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Fig. 1. The Förster transfer time corresponding to the inter-
band transition for II-VI semiconductors in the strong confine-
ment limit from the states {0, 1, 0, 1} (solid line), {0, 1, 1, 1}
(long-dashed line), {0, 1, 2, 1} (short-dashed line), {1, 1, 1, 1}
(l = 0, dash-dotted line) versus the dot radius R, Lb = 30 Å.
The vertical arrows show schematically the intraband transi-
tion times (see the text for the details).

Fig. 2. The Förster transfer time for II-VI semiconductors
in the weak confinement limit from the states {0, 1} (1s – the
lower solid line, 2s – the upper solid line), and 1s states {1, 1}
(long-dashed line), {2, 1} (short-dashed line), {0, 2} (dash-
dotted line) versus the dot radius R, Lb = 30 Å.

Estimating the first fraction as 10−100 fs, one may obtain
numbers of the order of 10−100 ps in a favorable geometry.
However, a detailed treatment is beyond the scope of this
paper.

Now we return to the energy transfer when the
electron-hole pair is annihilated (interband transition),
considering the case R � aB. In Figure 2 we plot
the transfer times for several weakly confined 1s-exciton
states, the lowest ones – {l = 0, n = 1} (the lower
solid line), {1, 1} (long-dashed line), {2, 1} (short-dashed
line), {0, 2} (dash-dotted line), and the 2s-state with
{l = 0, n = 1} (the upper solid line) as a function of R at
fixed Lb = 30 Å. The lower limit of R is taken to be aB,
as the upper limit we choose 150 Å, since at larger dot
radii the times do not change significantly. From the plots

Fig. 3. The Förster transfer time corresponding to the inter-
band transition for III-V semiconductors in the strong confine-
ment limit from the states {0, 1, 0, 1} (solid line), {0, 1, 1, 1}
(long-dashed line), {0, 1, 2, 1} (short-dashed line), {1, 1, 1, 1}
(l = 0, dash-dotted line) versus the dot radius R, Lb = 30 Å
(analogously to Fig. 1).

Fig. 4. The same transfer times as in Figure 3 versus the
barrier thickness Lb, for R = 100 Å.

we see that (i) the transfer from the 2s-state is less rapid
than that from the 1s (by a factor of 8), (ii) the differ-
ence between dipole, quadrupole and octupole transitions
is not very large (due to the fact that the ratio R/(R+Lb)
is not much smaller than 1) and (iii) the dipole transfer
from higher excited states with l = 0 is slower due to a
partial cancellation in the radial integrals.

We have also performed similar transfer rate calcu-
lations for parameters typical for III-V materials (e.g.,
InGaAs): aB ' 160 Å, dvc ' 50 D, ε ' 9. Figure 3 shows
the transfer times for the same states as in Figure 1 as a
function of R for Lb = 30 Å for the strong-confinement
limit. The times are shorter than those for II-VI semicon-
ductors since the latter have smaller dipole moments dvc.
We also plot the transfer time as a function of the barrier
thickness Lb for R = 100 Å in Figure 4. As one may ex-
pect, the higher multipoles, whose electric field decreases
more rapidly in space, are more sensitive to the barrier
thickness than the lower ones.
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5 Variational estimate

To investigate the crossover region between the two lim-
iting cases, that is R ∼ aB, we take a simple variational
wave function for the lowest excited state:

ψa,b(re, rh) = A(a, be, bh)
χ0(re)√
χ0(re) + be

χ0(rh)√
χ0(rh) + bh

× exp
(
−|re − rh|

a

)
, (27)

where a, be, and bh are positive variational parameters,
A(a, be, bh) is the normalization coefficient. The wave func-
tion χ0(r) is the one given by the equation (18) for
l = m = 0, n = 1:

χ0(r) =
1√

2πR1

sin(πr/R1)
r

· (28)

The wave function (27) is slightly more general than one
proposed long ago by Kayanuma [22]. The latter function
did not contain the denominators with the square roots
as in the function (27) and depended on the single pa-
rameter a. We have chosen the wave function (27) since it
reproduces correctly the shape of the polarization ψ(r, r)
in both limiting cases: for R � aB both a and b’s be-
come large and one obtains the wave function (17), while
for R � aB we have a ' aB (the Wannier exciton “is
formed”), be, bh ∼ aB/R

5/2 (the surface corrections to the
exciton wave function) and one gets the same polariza-
tion as for the wave function (21). The exponential factor
is very important since it enhances the probability of find-
ing the electron and hole at the same point, which affects
the polarization. The variable “exciton radius” a measures
the role of Coulomb correlations between the electron and
the hole. The Hamiltonian we consider is given by

Ĥ =
p̂2

e

2me
+

p̂2
h

2mh
+ V (re) + V (rh)− e2

ε0|re − rh|
, (29)

where V (r) is zero for r < R and infinity for r > R, ε0 is
the semiconductor background dielectric constant.

To test the wave function (27), we compare the ener-
gies obtained from it for different values of R/aB with
those obtained by the exact diagonalization (Ref. [16])
for me = mh. The discrepancy is quite small (less than
0.1 Ry). We were not able to repeat the calculation for the
value me/mh = 0.01 to compare it with the results of ref-
erence [16], due to computational problems (for strongly
different masses the energy to minimize becomes a very in-
convenient function to treat by standard methods). How-
ever, having performed the calculations for me/mh = 0.29
(the case of CdSe, heavy holes), we see that though the
energy is sensitive to the mass ratio, the dipole moment
is not (the two corresponding curves in Figure 5 would
merge). Thus, we may hope that the wave function (27)
reproduces the dipole moment of the dot reasonably well.

Figure 5 shows the transfer times from the lowest state
of e-h pair (discontinuous solid line) and the second ex-
cited state (discontinuous dashed line) in both limiting

Fig. 5. The transfer times from the lowest state of e-h pair
(discontinuous solid line) and the second excited state (dis-
continuous dashed line) in both limiting cases versus the dot
radius for the same parameters as in Figures 1, 2. The continu-
ous solid line represents the result of the variational calculation
for the lowest state.

cases versus the dot radius for the same parameters as in
Figures 1, 2. The lowest state is the {0, 1, 0, 1} state for
the strong confinement and the {0, 1} state of 1s-exciton
for the weak confinement, while the second excited state
is {0, 1, 1, 1} and {1, 1} respectively. The continuous solid
line represents the result of the variational calculation for
the lowest state. For R ∼ aB it gives even a more opti-
mistic result. The behaviour of the variational curve at
R > 2aB is somewhat unexpected, however, the detailed
inspection of the numbers shows that this curve has a
maximum at R ' 3aB and then converges to the limiting
curve. We cannot be sure whether this feature is indeed
present in the exact solution, or is just due to the poore-
ness of the chosen function. In any case, the discrepancy
is not very large (the factor is about 1.3). So, one can
say that the estimations using the limiting expressions for
the strong and weak confinement describe the situation
reasonably well (within a factor of 3).

6 Conclusions

Our calculations for quantum dots show that the Förster
energy transfer from the lowest state of the electron-hole
pair in the dot to a strong-absorbing organic material is
fast enough compared to the carrier recombination time.
The transfer times from higher excited states may be
longer if the corresponding transition is dipole-forbidden.
However, the radiative recombination of the pair in such
states should also be suppressed, so we may expect that
large part of the quantum dot energy may be transferred
to the organic molecules with possible subsequent emission
of light. The possibility of pumping quantum dots electri-
cally makes the mechanism, considered here, interesting
for applications.

We have also estimated the effect of an organic sub-
stance on the carrier intraband relaxation in the case when
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the organics has a nonzero absorption coefficient at the fre-
quency, corresponding to the given intraband transition.
Unlike intradot Auger processes, such relaxation mecha-
nism does not require more than one carrier inside each
dot. Of course, such a process may occur in the presence
of any absorbing substance, not necessarily organic.
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